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The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special
architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in
numbers of side chains and numbers of monomer units in these chains. It is shown �by analysis of the structure
factor of the melt� that microphase separation at two different length scales in the melt is possible. The large
and small length scales correspond to separation between comb blocks and separation between monomer units
in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is
favored for a given parameters of chemical structure of macromolecules are constructed.
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I. INTRODUCTION

A distinctive feature of block-copolymer melts is their
ability to form spatially periodic mesophases whose period
falling within the nanometer range �1�. This unique property
of block copolymers opens up possibilities for their applica-
tion in nanotechnology for the creation of photonic crystals,
nanoporous materials, and high-density storage media �2–5�.
The periodic structures formed in melts of the simple binary
block-copolymer �e.g., diblock copolymer� melts are usually
characterized by one spatial length scale. The hierarchical
structures which have more than one characteristic length
scale have been found both theoretically and experimentally
in copolymer melts whose macromolecules consist of more
than two types monomer units �6–16�. These hierarchical
mesophases constitute the short length scale structure formed
within the large scale one. As it was shown recently, two
scale structures can be also obtained in the binary block-
copolymer melts which contain the macromolecules of spe-
cially designed architecture �17–27�. Up to now, the two-
scale behavior has been theoretically discovered for several
types of architectures of block-copolymer macromolecules
comprised only two distinct types of the monomer units.
These architectures, depicted in Fig. 1, include �a� linear-
comb block copolymer, �b� linear-alternating block copoly-
mer, �c� linear-alternating-linear block copolymer, and �d�
linear-alternating-linear-alternating block copolymer.

The possibility of formation of two-scale structures in bi-
nary block-copolymer melts was predicted by Nap et al. �17�
for copolymers of types �a� and �b� presented in Fig. 1. It was
found that the inverse structure factor of these copolymer
melts can have either one minimum or two minima. The
presence of two minima indicates that two different length
scales may occur at microphase separation. It is very impor-
tant that these length scales differ markedly in value. The
smaller of these scales is determined by the radius of gyra-
tion of repeating fragment of alternating or comb block and
the larger one by the radius of gyration of the whole macro-
molecule. It was shown that depending on the parameters
�m ,n� of chemical structure of macromolecules presented in

Figs. 1�a� and 1�b�, the microphase separation can occur at
only one or at both length scales. The so-called classification
diagram presented in paper �17� indicates which length scale
is realized for a given set of parameters �m ,n�. The existence
of bifurcation point in �m ,n�-parameter space was estab-
lished �17�. Below this point, the inverse structure factor has
only one minimum whereas above bifurcation point it can
have two minima.

The number of theoretical studies has been undertaken to
describe the formation of the hierarchical structures with
double periodicity in melts of copolymers whose architec-
tures are presented in Fig. 1 �18–29�. The phase diagram of
the linear-comb block-copolymer melt �Fig. 1�a�� was con-
structed in the framework of weak segregation theory �WST�
�18,19�. The investigation of the same system by using the
self-consistent field theory �SCFT� revealed the possibility of
formation of various hierarchical nanostructures �20�. The
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FIG. 1. �Color online� Models of macromolecules whose archi-
tecture involves two length scales. Solid and dotted lines corre-
spond to the blocks of A-type and B-type monomers, respectively.
Macromolecule consist of �a� A homopolymer block attached to the
AB-comb copolymer block, �b� A homopolymer block linked to the
AB multiblock copolymer, �c� A homopolymer and B homopolymer
blocks attached from both sides of AB-multiblock copolymer, and
�d� A homopolymer block, AB multiblock, B homopolymer blocks,
and AB-multiblock copolymer attached successively. Parameters m,
n, f , and N determine the chemical structure of macromolecule.
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phase behavior of the monodisperse melt of linear-
alternating block copolymer �Fig. 1�b�� was investigated
within SCFT �21,22�. The formation of hierarchical lamellae-
in-lamella phases with two length scales was demonstrated.
The microphase separation in melt of the linear-alternating-
linear block copolymer �Fig. 1�c�� has been studied both
within WST �23–25� and SCFT �26�. The classification dia-
gram �24� and phase diagrams �25–27� have been found. The
general diagrammatic algorithm for finding coefficients of
the Landau free-energy expansion for the description of ther-
modynamical behavior of multiblock copolymers whose
macromolecules contain blocks of two types substantially
differing in length has been put forward in paper �28�. Later,
this algorithm has been used in paper �29� to describe within
WST the phase behavior of copolymer melt whose macro-
molecules comprise periodically repeating segments of type
�d� �Fig. 1�. The possibility of two-scale behavior in melts of
double-grafted block copolymers has been discussed in paper
�30�. The hierarchical lamellae-in-lamella structures were
observed experimentally for copolymer whose macromol-
ecules comprised two long polystyrene blocks attached to the
both ends of middle multiblock consisting of alternating
short polystyrene and polyisoprene blocks �31�.

In this paper we discuss the possibility of formation of
two scale structures in the comb copolymer melt whose mac-
romolecule contains side chains of two different lengths.
This architecture depicted in Fig. 2 differs from those inves-
tigated previously �Fig. 1�. The objective of this study is to
analyze within WST the dependence of the structure factor of
this melt on the parameters of chemical structure of macro-
molecules. We intend to demonstrate that such comb copoly-
mer melt is to exhibit microphase separation characterized
by two length scales which differ in value noticeably.

The paper is organized as follows. The model of comb
copolymer and its parameterization is discussed in the next
section. The expression for the structure factor of the system
is given in the Sec. III. Section IV contains the results of
modeling and discussion.

II. MODEL

We consider the incompressible melt of monodisperse AB
comblike macromolecules. Each macromolecule consists of
homopolymer A backbone with homopolymer B side chains
attached to it. The total number of side chains is ns. We
suppose that each of m side chains located successively from
one end of macromolecule consists of NB

�m� monomer units,
whereas each of the rest of n side chains contains NB

�n� mono-
mers �ns=m+n� �Fig. 2�. The number of monomer units be-
tween successive grafting points of backbone is Ng. The

number of monomer units before the first side chain and after
the last one is equal to tNg and �1− t�Ng respectively, where t
is so-called asymmetry parameter �32�. Thus, number of
monomer units of backbone is NA=nsNg. The total number of
the monomer units in macromolecule is equal to N=NA

+mNB
�m�+nNB

�n�. Both A and B monomer units are assumed to
be of an equal size a. Such macromolecule can be considered
as composed of two comb copolymer blocks, �m� block and
�n� block, whose backbones attached to each other. The num-
ber of monomer units of repeating fragment of �m� block and
�n� block is Ng+NB

�m� and Ng+NB
�n�, respectively. Here, re-

peating fragment includes a part of backbone between two
successive grafting points: one of grafting points and side
chain attached to it.

In order to simplify the further consideration, let us as-
sume that

Ng = d, NB
�m� = �d, NB

�n� = d, �0 � � � 1� , �1�

so total number of the monomer units is

N = Kd, K = �1 + ��m + 2n . �2�

The fractions of monomer units of each type in macromol-
ecule, �m� block, and �n� block are given by the following
expressions, respectively:

XA = �m + n�/K, XB = 1 − XA,

XA
�m� = m/K, XA

�n� = XA − XA
�m�,

XB
�m� = m�/K, XB

�n� = XB − XB
�m�. �3�

It should be noted that value �=1 corresponds to the model
of the conventional AB comb copolymer �32–34�, whereas
for �=0, the model proposed by Nap et al. �17� is recovered.

III. THEORY

To analyze the microphase separation in melt, we resort to
the WST �35,36�. The WST is built upon the representation

of the Landau free energy F���̃��� of a copolymer melt in a
form of the Taylor functional series in powers of the Fourier

transforms �̃A�q� , �̃B�q� of the order parameters
�A�r� ,�B�r�. Each �th of them represents a deviation of lo-
cal density ���r� of monomer units of �th type at point r
from its volume average value ��=A ,B�. Due to the incom-

pressibility of melt, the condition �̃A�q�=−�̃B�q�= �̃�q�
holds and the expression for the free energy assumes the
form

F���̃�� = �
k=2

�
1

k!��qi�
�̃k�q1, . . . ,qk��

i=1

k

�̃�qi�

� 	K�q1 + ¯ + qk� . �4�

The functional �4� is completely characterized by the kth

order vertex functions �̃k�q1 , . . . ,qk� which are determined
by architecture and composition of copolymer and interac-
tions between monomer units. The calculation of these func-
tions at least up to the fourth order is required to investigate
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FIG. 2. �Color online� Model of macromolecule considered in
this paper. The figure corresponds to macromolecule with m=4 and
n=3 side chains comprised NB

�m� and NB
�n� monomers, respectively.
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within WST the possible types of equilibrium morphologies
of the microphase separated structures.

Because the further discussion will be restricted to exami-
nation of boundary of the thermodynamical stability of the
spatially homogeneous state of copolymer melt, it is suffi-
cient to consider only vertex function of the second order.
This function determines the structure factor S�q� of the melt

�̃2�q1,q2�	K�q1 + q2� 	 �̃2�q� = S−1�q� ,


q1
 = 
q2
 = q . �5�

It can be written in the following form �33,35�:

�̃2�q� = �̃2
�0��q� − 2
 ,

�̃2
�0��q� =

XAA�q� + 2XAB�q� + XBB�q�
XAA�q�XBB�q� − �XAB�q��2 , �6�

where interactions between monomer units are taken into
account via Flory-Huggins parameter 
 �37� and X���q�
�� ,�=A ,B� are the Fourier transforms of the second-order
correlation functions of densities of monomer units �38,39�.
These correlation functions can be written as X���q�
= �d2 /N�G���q�, where

GAA = �m + n�2gD��m + n�y� ,

GAB = �H��y�
1

y
�2m − f�m;y��e−ty + e�t−1−n�y��

+ H�y�
1

y
�2n − f�n;y��e−�t+m�y + e�t−1�y�� ,

GBB = m�2gD��y� + ngD�y� + 2��H��y��2 e−y

�1 − e−y�2 �m�1

− e−y� − 1 + e−my� + 2�H��y�H�y�e−yf�m;y�f�n;y�

+ 2�H�y��2 e−y

�1 − e−y�2 �n�1 − e−y� − 1 + e−ny� . �7�

Here, y=d�a2q2 /6� and the following designations have been
used:

gD�x� =
2

x2 �x − 1 + e−x� ,

H�x� =
1

x
�1 − e−x� ,

f�k;x� =
1 − e−kx

1 − e−x . �8�

It is easy to verify that for value �=0 expressions �7� coin-
cide with ones derived earlier for linear-comb block copoly-
mer �17�.

The function �̃2�q� �6� determines the spinodal in the
phase space �
 ,� ,m ,n�. At spinodal, the spatially homoge-
neous state of melt becomes unstable against microphase
separation, i.e., formation of periodic structure. For the fixed
parameters of chemical structure �� ,m ,n�, the spinodal con-
dition assumes the form �35�

� ��̃2�q�
�q

�
q�

= 0, � �2�̃2�q�
�q

�
q�

� 0, �̃2�q�� = 0. �9�

According to the expressions �6� and �9�, the spinodal value
of Flory-Huggins parameter is
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FIG. 3. �Color online� Plot of the inverse structure factor curves as function of y �y=d�aq�2 /6� for various values of parameters �� ,m ,n�.
�Left panel� A: �0.2,40,20�, B: �0.5,70,3�, and C: �0.5,5,50�. The single minimum is attained at �A� q=qL

�, �B� q=qS
��qS

��m�, and �C� q
=qS

��qS
��n�. �Right panel� D: �0.4,20,40�, F: �0.6,74,19�, and E: �0.45,15,90�. The two minima are attained at ��D� and �E�� q=qL

� and �F�
q=qS

��qS
��n�, q=qL

�, and q=qS
��qS

��n�. The minimum located at qL
� �qS

�� is absolute one in D �E� case. The absolute difference of the minimum
values is smaller than 0.0074 in �F� case.
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s = �̃2
�0��q��/2, �10�

where q� is the location of absolute minimum of function

�̃2�q�. The value of q� determines the characteristic length
scale D1 /q� of the microphase-separated structure.

Depending on the values of parameters �� ,m ,n�, the in-

verse structure factor �̃2�q� for the copolymer melt under
consideration has either one minimum or it has two minima.
The single minimum can be located at q=qL

� or q=qS
�

whereas two minima can be attained at q=qL
� and q=qS

�. In
the latter case, one of minima can be absolute or the depths
of the both minima can be equal. It is very essential that the
inequality qL

� qS
� holds so that the corresponding length

scales differ noticeably in value. The larger length scale DL
1 /qL

� corresponds to microphase separation between �m�
and �n� blocks of macromolecule and is of magnitude of
gyration radius of a whole macromolecule. The smaller
length scale DS1 /qS

� corresponds to microphase separation
between monomers of distinct types in repeating fragments
of the blocks of macromolecule and is of magnitude of gy-
ration radius of repeating fragment of �m� or �n� block. For a
given value of parameter � ���0�, the location of qS

� can
vary in range qS

��n��qS
��qS

��m�. Here, the values qS
��n� and

qS
��m� correspond to the limiting cases m=0, n�1 and n=0,

m�1, respectively. The minimum of inverse structure factor
is attained at q=qS

��qS
��n� for n�m, m�0 and at q=qS

�

�qS
��m� for nm, n�0. The inverse structure factor curves
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FIG. 5. The plot of location of absolute minimum y� �y�=d�aq��2 /6� of the inverse structure factor vs X�m� for �a� �=0, �b� �=0.3, �c�
�=0.6, and �d� �=0.8.
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which exhibit one minimum and two minima are presented
in Fig. 3.

IV. RESULTS AND DISCUSSION

The spinodal curve is a plot of parameter 
s �10� versus
copolymer composition. For instance, for the binary multi-
block copolymer �34� or comb copolymer �32,34�, these
curves are plotted in variables �
s ,XA�, where XA is the vol-
ume fraction of the A-type monomer units. For the copoly-
mer melt under consideration, it is more convenient to plot

s versus X�m� where X�m�=XA

�m�+XB
�m�=m�1+�� /K �3� is the

fraction of monomer units in �m� block of the macromol-
ecule. With fixing value K �2� which determines the total
number of monomer units in macromolecule and parameter
�, the X�m� fraction can be made dependent only on param-
eters m and n. All results discussed below correspond to the
value t=1 /2 and K=1000.

Figure 4 shows a plot of spinodal curves �
s ,X�m�� for the
various values of �. The spatially homogeneous �disordered�
state of melt is stable in region located below each of these
curves whereas microphase separated structures are stable in
region located above. As can be seen in Fig. 4, for ��0,
each curve has generally three parts, corresponding to three
possible variants of separation: left and right parts corre-
spond to the separation on small length scale governed by
size of repeating fragment of �n� block and �m� block, re-
spectively, and middle part corresponds to the separation on
large scale. When the fraction of monomer units in �m� block
is small �mn�, the length scale of microphase separation is
determined by the repeating fragment of �n� block and the
inverse structure factor has single minimum located at q
�qS

��n�. As X�m� increases, the second minimum located at
q=qL

� appears. Upon further increasing of X�m�, the minimum
located at q=qL

� becomes absolute one and the separation on
the large length scale takes place �middle parts of curves�. If
��0 and the value of X�m� has increased sufficiently, the
location of local minimum shifts from q�qS

��n� to q�qS
��m�.

Further growth of X�m� value makes minimum located at q
�qS

��m� absolute one. Thus, as fraction of �m�-block mono-
mer units becomes high enough, the length scale of mi-
crophase separation is dictated by the radius of gyration of
repeating fragment of �m� block. If parameter � equals zero,
the right part of curve is absent and the spinodal curve has
appearance obtained previously �17� �Fig. 4� ��=0�. As pa-
rameter � grows, the value 
s increases for the middle parts
of curves presented in Fig. 4. This implies that it requires a
lower temperature to obtain a phase separation on a large
length scale as number of units in the side chains of �m�
block increases. The substantial change in location of the
absolute minimum of inverse structure factor at varying of
X�m� value is shown in Figs. 5�a�–5�d�. “Switching” between
upper and lower curves presented in Figs. 5�a�–5�d� corre-
sponds to the drastic change of the length scale of mi-
crophase separation. The growth of side chains in �m� block
�i.e., increasing of �� narrows the window for separation on
large length scale.

To specify which length scale of microphase separation
realizes for a given set of parameters �� ,m ,n�, it is necessary

to construct so-called classification diagrams �17�. As it was
already mentioned at value �=0, our model coincides with
model proposed by Nap et al. �17� except that in the latter
the parameter t was set to zero. It comes as no surprise that
classification diagram for value �=0 presented in Fig. 6
agrees closely with one obtained previously �17�. It is worth
to note that although m and n can have only positive integer
values, it is more convenient to treat these parameters as the
real variables and plot continuous curves at classification
diagrams. The inverse structure factor in the S region and L
region in Fig. 6 has a single minimum located at qS

� and qL
�,

respectively. There are two minima if set of parameters
�m ,n� belongs to SL region or SL region. The qS

� is the ab-

solute minimum of function �̃2
�0� in first of these regions and

qL
� in the second one. Lines at Fig. 6 correspond to the

boundaries between different regions in �m ,n�-parameter

space. At line equation, the condition �̃2
�0��qS

��= �̃2
�0��qL

��
holds. Below the bifurcation point O at which the boundary

lines merge together �Fig. 6�, the function �̃2
�0� has single

minimum, above this point function �̃2
�0� can have two
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FIG. 7. �Color online�. Classification diagram for �=0.1. Sym-
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minima. Noteworthy that classification diagrams obtained
previously for the linear-alternating block copolymer �Fig.
1�b�� �17�, the linear-alternating-linear block copolymer �Fig.
1�c�� �24�, and the linear-alternating-linear-alternating block
copolymer �Fig. 1�d�� �29� have the appearance similar to
diagram presented in Fig. 6.

The classification diagram changes qualitatively in com-
parison to previous case if the lengths of side chains of �m�
block are distinct from zero, i.e., ��0. The diagram that
corresponds to the value �=0.1 is presented in Fig. 7. In
contrast to diagram for �=0 �Fig. 6�, the two bifurcation
points �O and O�� in �m ,n�-parameter space appear. The
length scale of microphase separation in S and SL regions is
determined by the radius of gyration of the repeating frag-
ment of �m� block if m�n �absolute minimum of inverse
structure factor is located at qS

��qS
��m�� and of �n� block �ab-

solute minimum is located at qS
��qS

��n�� otherwise. Upon
crossing in �m ,n�-parameter space the curve OO� which con-
nects bifurcation points, the position of single minimum y�

�1 �in S region� changes to y��1 �in L region�.
The classification diagrams constructed for �=0.2 and �

=0.25 �Fig. 8� show that curve OO� diminishes as parameter

� increases. Size of the SL regions increases attended by the
shrinking of L region. Upon reaching value �=�1

�c�=0.278,
the bifurcation points and curve OO� disappear. The bound-
ary curves emerge that separate regions S, SL, SL, and L
from each other �see Fig. 9�. Further increase of parameter �
that corresponds to the growth of side chain length in �m�
block of macromolecules leads to substantial shrinking of L
region �see Fig. 9�.

At value ���2
�c�=0.33, L region disappears and classifi-

cation diagrams assume the forms depicted in Fig. 10. As
parameter � varies in the range �2

�c����1, the sizes of
regions S and SL increase substantially. At ��1, only these
regions survive with SL region shifted in parameter space to
very large values of m and n. Finally, at �=1, the architec-
ture of macromolecules transforms to one of regular
AB-comb copolymer which contains side chains of the same
length distributed regularly along the backbone. The periodi-
cal structures formed in melts of such copolymer are charac-
terized by only one length scale which is of magnitude of
gyration radius of repeating fragment of comb macromol-
ecule �32,34�. This implies that only S region exists for this
copolymer.
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FIG. 8. �Color online� Classification diagrams for �=0.2 �left panel� and �=0.25 �right panel�.
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V. CONCLUSION

The phase behavior of binary copolymer melt contained
the comb macromolecules whose side chains can be of the
two unequal lengths is discussed. The dependence of the
behavior of the inverse structure of melt on the parameters of
chemical structure of macromolecules is investigated. It is
shown via analysis of stability limit of disordered state of
melt that two different length scales of microphase separa-
tion can be realized. The large length scale DL is due to the
microphase separation between �m� block and �n� block of

macromolecule and the small length scale DS is due to mi-
crophase separation of chemically distinct monomers in re-
peating fragments of �n� block and �m� block. To determine
which length scale is preferred for a given set of parameters
of chemical structure, the classification diagrams are con-
structed. It is shown that for nonzero lengths of side chains
in �m� block �i.e., 0���1� classification diagrams are
qualitatively unlike those obtained previously for copoly-
mers presented in Fig. 1. The existence of two bifurcation
points for some values of parameters of chemical structure is
found.
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